Slider

Science

SCITECH

AMAZING FACTS

NATURE SPACE

Psychology

Why Are Roofing Materials Corrugated or Ribbed?

Strength

  • The corrugations in roofing materials are created by a process known as roll-forming, which creates a material that is stronger and more rigid than a flat sheet of the same thickness. Corrugated metal roofing, in particular, has a high strength of material to weight ratio.

Protection

  • Provided the pitch, or slope, of a corrugated roof is sufficient, the corrugations provide more effective channeling for the runoff of rainwater than a plain roof. There is a minimum pitch for corrugated sheeting, often around 5 degrees, but this is much lower than the requirement for other roofing materials, such as tiles.

Weight

  • Corrugated roofing materials are relatively lightweight and easy to handle when compared with other roofing materials. This means that they provide a cheaper, more convenient method of roofing and reduce the weight of material above your head; this can be a consideration if you live in an area prone to earth tremors.

Applications of Nanotechnology In Construction

Applications of Nanotechnology In Construction

Nano-Particles used with building materials are currently used for producing durable, anti-bacterial, purified air compound paint and green building materials. However, some applications of nanotechnology in construction still remain as an idea such as for construction of high-rise buildings, intelligent infrastructure systems, long-span systems etc.
Lu et al. (1992) produced samples with compressive strength up to 800 MPa. Richard et al. (1994) developed concrete by Reactive Powder Concrete (RPCs) which attained strength ranging from 200 to 800 MPa using nano-particles.
One of the most beneficial application using nano-particles in concrete is producing high-compressive strength concrete equivalent to rock hardness for special applications such as filling the annular space surround instrumentation packages previously placed in drilled bore-holes.
The nano-particles used with fly ash concrete provides more environment friendly cleaner concrete with early high strength of concrete than normal fly ash concrete, which is also economical (Said et al. 2009). Moreover, mitigating problems that face Ferrocement construction (a thin wall reinforced concrete) is another application by Hosseini et al. (2010).
nanotechnology-in-construction
The main and most most important constructions that are benefitted from nanotechnology are:
1) Construction materials with ultra high performance (high durability, high ductility and high strength) such as steel, concrete, polymers and self healing structural composites
2) Embedded structural sensors that could be used for health and moisture content monitoring such as MEMS and intelligent aggregates.
3) New coatings such as self cleaning and corrosion protection coatings.
4) New structural design for infra structures incorporating strong materials with ultrahigh Ductility.
5) New tools that can be used to recognize nano-structure of construction composites behavior.

Reconstructionism: 88 Dramatic Deformations of 1 Building

building montage
His world-famous photo manipulations span the globe but this time with a twist: a single seemingly-unremarkable structure bent, broken, shattered, turned, twisted and reformed in dozens of ways.
building float
building side
building twist
Victor Enrich starts with an intentionally plain subject – an ordinary hotelin Munich, Germany – then begins to unravel it floor by floor, split it up the middle, peal it like an onion, inflate it like a balloon, flip it from side to side and much more. Essentially any adjective you can think of has been visually applied to deform this building.
building deformations
building split
building turn
Like an architect with an over-active imagination or impossibly-demanding client, he envisions seemingly endless configurations while variously (depending on the piece) respecting the overall material, language, volume and (/or) site of the subject structure. Each piece is in some way recognizable with reference to the original, even when it pushes the boundaries of physical possibility.
building bend
building wrap
building explode
The resulting works can be viewed on his site and are summarized in the video shown here. Each is also available as a reasonably-priced print if from his website any grab your eye in particular, or grid editions(multiples on a single print) if you wish to frame your own sequence of deconstructions.

Timber Tower Research Project

Timber Tower Research Project

Benton Johnson, P.E., S.E., David Horos, P.E., S.E., LEED AP and William Baker, P.E., S.E., F. ASCE, FIStructE
The Timber Tower Research Project by Skidmore, Owings & Merrill, LLP (SOM) was publically released in June of 2013, and is available for download at SOM’s website. The goal of the research project was to develop a structural system for tall buildings that uses mass timber as the main structural material and minimizes the embodied carbon footprint of the building. The structural system research was applied to a prototypical building based on an existing concrete benchmark for comparison. The concrete benchmark building is the Dewitt-Chestnut Apartments, a 395-foot tall, 42-story building in Chicago designed by SOM and built in 1966.

SOM’s proposed system is the "Concrete Jointed Timber Frame". This system relies primarily on mass timber for the main structural elements, with supplementary reinforced concrete at the highly stressed locations of the structure: the connecting joints. This system plays to the strengths of both materials and allows the structural engineer to apply sound tall building engineering fundamentals. The result is believed to be an efficient structure that could compete with reinforced concrete and structural steel systems, while reducing the embodied carbon footprint of the structure by 60 to 75%.


Project Basis


The basis of the research project was rooted in sustainable urban development. Recent population projections have estimated the current world population of 7.0 billion people to increase to 11.0 billion people by the year 2050. More importantly, the number of people that will be living in cities has been estimated to double from 3.5 billion people to 7.0 billion people in the same time frame. Tall buildings will likely be needed in order to house that many additional people in growing cities. Tall buildings constructed to meet population demands need to be developed in sustainable ways to limit environmental impacts.

Tall buildings built using current technology and materials pose a challenge to sustainable city development because they offer both positive and negative environmental impacts. Positive impacts include reducing urban sprawl, promoting alternative transportation, and efficient energy use. These benefits come at the cost of emitting more carbon dioxide to produce the materials and to construct the building. These carbon emissions are referred to as the embodied carbon footprint of a building. A tall building’s embodied carbon footprint is significantly higher relative to low-rise buildings on a per square foot basis. This is because the structure is usually responsible for the majority of the building’s embodied carbon footprint, and tall buildings require far more structure to support their height. The structural system chosen for a tall building can have a significant impact on the overall embodied carbon footprint of the building.

Architectural detail of the wood structure proposed in the Timber Tower Research Report.

Design and Sustainability Issues


Structural engineers currently have four primary materials in which to design buildings: steel, concrete, masonry, and wood. Tall buildings currently use steel or concrete almost exclusively, for two reasons. First, with some limited exceptions, non-combustible materials are required by most building codes for buildings greater than four stories tall. Second, steel and concrete have higher material strengths than masonry and wood, making them a natural choice for tall buildings which require support of very large loads. These factors have generally limited wood use to low-rise buildings. Recently, developments in mass timber technology are overcoming these challenges. Mass timber products such as cross-laminated timber (CLT) can be built up using small pieces of dimensional lumber and structural adhesives to achieve panels as large as 1foot thick and 40 feet long. These panels can be used as floors and shear walls with structural sizes necessary to support a tall wooden building. Wood members of this size have an equally important characteristic; they behave like heavy timbers in a fire and form an insulating char layer which protects underlying material. The charring behavior is predictable and preserves a portion of the member’s structural strength, making performance based fire design of mass timber structures possible. Mass timber has made wood a viable choice for multi-story buildings as evidenced by completed projects in Europe and Australia, and many other proposed projects around the globe.

The structural and fire engineering advancements of mass timber have made recent multi-story wood buildings possible. However, the sustainability of wood seems to be an equally important consideration in the resurgence of multi-story timber buildings. Wood has been shown to be more sustainable than other materials because it generally requires less energy to produce compared to structural steel and reinforced concrete. More importantly, wood is approximately 50% carbon by weight, a carbon sink that is the natural result of photosynthesis. These sustainable aspects of wood make mass timber an attractive material from which to construct the sustainable cities of the future. The intersection of increasing urban populations, need for tall buildings, and the sustainability of wood has led to the increasingly popular concept of tall wood buildings. SOM has committed decades of tall building design expertise to furthering this concept, through the Timber Tower Research Project, by identifying key design and construction issues related to tall wood buildings and proposing the "Concrete Jointed Timber Frame" structural system. This system is optimized for tall buildings and could be competitive with existing tall building structural systems. The proposed system balances the requirements of building marketability, economy, and sustainability.

SOM’s Timber Tower Research Project proposes a "Concrete Jointed Timber Frame" system that relies primarily on mass timber for the main structural elements, with supplementary reinforced concrete at the connecting points.

Material Optimization


The primary goal of any structural system is to provide a marketable and valuable building to the owner and occupants. A marketable building must have adequate and flexible floor area to layout useful space for the occupants. The most marketable building layout is an open floor plan which allows a variety of room layouts and maximum flexibility for future changes. An open floor layout requires that the floor structure span the entire distance of the leasable area. This distance in the Benchmark Dewitt-Chestnut building was 28 feet 6 inches, with a clear span of 26 feet 3 inches. The most advantageous system to span this distance is a flat mass timber panel which minimizes floor-to-floor height of the building. The required panel thickness to span the required distance was determined to be 13½ inches. This thickness was thought to be too great compared to the material required for the Reinforced Concrete Benchmark to be economically viable. Therefore, alternative methods to span the required distance were investigated in order to reduce the amount of structural materials used.

The controlling design consideration for the mass timber floors was determined to be vibration due to occupant activity. The floors were analyzed according to American Institute of Steel Construction Design Guide 11, utilizing the velocity-based methodology, which was found to be more useful for flat slab-type floors. Evaluation of the criteria shows that increasing floor stiffness is the most effective way to control vibrations. The floor stiffening effect of end rotation restraint (fixed end condition) was quickly realized as an efficient way to reduce vibrations. It was determined that an 8-inch-thick mass timber floor panel could be used if end restraint was provided. This requires moment connections at the intersection of mass timber floor panels with vertical elements such as mass timber shear walls and structural glued laminated timber perimeter columns. Several connection schemes were investigated to provide the required moment connections. Steel reinforcing epoxy connected to the mass timber and cast-in reinforced concrete joints were determined to be the most reasonable solutions due to the ability of reinforced concrete to resist complex load paths. These reinforced concrete joints are able to resist floor-to-floor compression, shear, bending moments, and torsion, thus creating an efficient composite-timber system.

The reinforced concrete joints also proved to be useful in other tall building aspects. The concrete jointing between timber floors and timber shear walls provides a link beam between individual wall panels. This creates a stiff lateral load resisting system which is required for a tall building. It was also determined that the demands on the link beams were beyond the capacity of a structural glued laminated wooden link beam, requiring the use of a material other than wood. The concrete joints and link beams were also useful in the design of the lateral system to resist net uplift due to lateral loads. The Prototypical Building has approximately 40% of the dead load of the Benchmark Building. This led to net uplift forces at the extremities of the lateral load resisting system. This net uplift would have been exacerbated without the concrete joints which account for over 50% of the entire structure dead load, yet only 20% of the structural material volume for a typical floor.

A comparison of the structural materials required to construct the Benchmark and Prototypical building shows that the proposed system is very efficient in material consumption and could be competitive with reinforced concrete. The goal of minimizing the structural materials used, namely mass timber, will help reduce costs and minimize new demands on forest resources which may become strained due to increasing populations and demands.

The non-structural effects of the proposed system were evaluated and the most notable effect was the acoustic treatment required on top of the mass timber floors in order to achieve a marketable acoustic rating. The most effective treatment was determined to be a 2-inch-thick gypsum concrete topping. This treatment thickness, in addition to potential ceiling finishes, required 3 inches of additional floor-to-floor height in order to maintain the same floor-to-ceiling height as the Benchmark building. This has impacts on wind loads on the building, and non-structural costs such as the exterior wall system.


Conclusion


SOM believes that the proposed system is technically feasible from the standpoint of structural engineering, architecture, interior layouts, and building services. Additional research and physical testing is necessary to verify the actual performance of the structural system relative to the theoretical behavior. SOM has also developed the system with consideration for constructability, cost, and fire protection. Reviews from experts in these fields, and physical testing related to fire, is also required before this system can be fully implemented in the market. Lastly, the design community must continue to work creatively with forward thinking municipalities and code officials using the latest in fire engineering and performance based design to make timber buildings a viable alternative for more sustainable tall buildings.▪
Benton Johnson, P.E., S.E., is an Associate at Skidmore Owings & Merrill LLP, Chicago, IL. He is the Project Engineer on the Timber Tower Research Project and can be reached at benton.johnson@som.com.

David Horos, P.E., S.E., LEED AP, is a Director at Skidmore Owings & Merrill LLP, Chicago, IL. Timber Tower Research Project and can be reached at david.horos@som.com.

William F. Baker, P.E., S.E., F. ASCE, FIStructE is the Structural Engineering Partner for Skidmore, Owings & Merrill LLP. Bill has dedicated himself to structural innovation, most notably developing the "buttressed core" structural system for the Burj Khalifa, the world’s tallest manmade structure. He is a Fellow of both the ASCE and the IStructE and a member of the National Academy of Engineering.
This article is available in Adobe PDF format:

PDF Timber Tower Research Project

Concrete-Eating Robot Recycles Buildings

Concrete-Eating Robot Recycles Buildings

Building demolition demands a lot of heavy machinery to crush concrete and separate valuable materials for reuse. Often, those materials are transferred to offsite locations, which wastes time and resources. The process also wastes a lot of water in order to prevent harmful dust clouds from blooming. However, a Swedish student’s concrete-eating robot aims to change all that.
“The ERO Concrete Recycling Robot was designed to efficiently disassemble concrete structures without any waste, dust or separation and enable reclaimed building materials to be reused for new prefabricated concrete buildings,” explained Omer Haciomeroglu of the Umea Institute of Design of Design. ”It does so by using a water jet to crack the concrete surface, separate the waste and package the cleaned, dust-free material.”
The idea is to send in a fleet of the ERO robots that will scan buildings to determine the best route to execute demolition. Once the robot goes to work, using vacuum suction and electrical power, it erases the building.
“ERO deconstructs with high-pressure water and sucks and separates the mixture of aggregate, cement and water. It then sends aggregate and filtered cement slurry separately down to the packaging unit to be contained,” Haciomeroglu wrote. ”Clean aggregate is packed into big bags, which are labeled and sent to nearby concrete precast stations for reuse. Water is recycled back into the system.”
Turbulence dynamos strategically placed inside air suction chambers even provide a percentage of ERO’s energy needs. Once the last wall has been demolished, essentially nothing has gone to landfills or been sent away for additional processing.
“Even the rebar is cleaned of concrete, dust and rust and is ready to be cut and reused immediately,” Haciomeroglu stated. “Every bit of the load-bearing structure is reusable for new building blocks.”
So far the design remains a concept, but influential organizations are starting to take note. Last year, Haciomeroglu’s concept won in the Student Designs category of the International Design Excellence Awards.

The Progression of High Strength Concrete

The Progression of High Strength Concrete

The definition of high strength concrete continues to change. This change occurs as the art of achieving a particular strength is reduced to practice, and the structural requirements push at the edge with needs for higher strength. One such example is the CN Tower in Toronto, with its required strength in 1976 of 5000 psi. At that time, this was difficult to achieve. Today 5000 psi concrete is routinely used and produced without special precautions.

In the manufacturing of high strength concrete, there are significant differences from those seen in practice just a few years ago. Cementitious components and content, admixtures aggregates and curing have changed. Once the province of high cement contents and silica fume, much of the developments over the last decade have revolved around a better understanding of, and attention paid to, the microstructure of the concrete. High strength concrete can be modeled as a three phase system -- the paste, the aggregate and the interface between them (Figures 1 and 2). By taking this approach, an engineered composite material can be designed.

Figure 1: Thin section of concrete showing microstructure of paste. Red arrows are typical flyash particles.
Figure 2: Thin section of concrete showing microstructure of paste. Note the relatively low degree of hydration of the slag particles (red arrows).
Actions taken to modify the interfacial transition zone between the aggregate and paste have increased the load transfer between the paste and aggregate; thereby increasing the strength of the concrete. It is the action of meta-kaolin, silica fume and other finely divided materials in modifying this interfacial transition zone that originally led to significant increases in strength. These materials were once used at high replacement levels, frequently greater than 10%. While high strength was often achieved, the workability and susceptibility to fracture of the concrete were problems that ultimately limited the strength.

In modern high strength concrete, blends of smaller quantities and fractions of silica fume result in large increases in strength without compromising the ability of the mixtures to be placed. In many cases, ternary or even quaternary blends of pozzolanic material with Portland cement are seen in practice.

One of the reasons for these blends is that the heat generated during the hydration process can cause residual stress within the paste, and reduce the strength of the concrete. While these types of effects can readily be removed in metals by annealing, no such process is available for concrete. The curing process must be engineered to control the hydration reaction so residual stresses are minimized. Temperature monitoring or other devices are used to track the progress and monitor the reaction that produces the binder.

The literature at the turn of the 20th century often referred to the curing process as annealing. While having very little to do with the concept of heat treating of metals, this curing, when performed properly, is a critical factor in the performance of higher strength concrete. Strengths up to 20,000 psi have been realized using pozzolanic materials, dispersants, limestone modified cements and careful attention to aggregate materials selection. The limestone acts to nucleate the reaction and reduces the quantity of unhydrated-cement.

Admixture technology has progressed. Stabilizing admixtures and dispersants with a low affinity for the solid surface, where a large fraction of dispersant remains in solution, has allowed mixtures to be held in a state of "suspended animation" while the concrete is placed. They can perform predictably, allowing scheduling of the construction process. Retarders, dispersants and stabilizers will increase the strength.

One of the difficulties that the designer of high strength concrete mixtures encounters is the ability to have workable concrete with very low water/cement ratios. Use of modern high-efficiency dispersants (super plasticizers) has led to observed autogeneous drying of materials due to hydration or vaporation due to high temperature. As a consequence, some very low water/cement ratio concrete have shown good performance in the laboratory but poor performance in the larger structural members, where the heat of hydration is not as readily dissipated and where the sample is not immersed in water for 28 or even 56 days. These limits are advancing by innovations such as the use of lightweight aggregate for internal curing and steel whiskers to distribute stresses.

Aggregate materials are no different. As the paste strength increases, and the interfacial transition zone densifies, the strength of the aggregate or the presence of fractures therein become a limiting factor. Reducing the maximum particle size and carefully selecting the geological origin of the materials can lead to significant improvements in strength.

Recognition by the design and construction team that the concrete strength does not need to be achieved at seven or 28 or even 56 days, but only as the structure is loaded, allows mixtures that have relatively low cement contents and very high pozzolanic replacement to achieve compressive strengths in excess of 15,000 psi.

Care must be taken in the production of high strength concrete in order to ensure that the performance of the concrete in situ is what was intended in the design. Raw materials, batching and handling at the plant and at the installation site must be controlled. Without an understanding of the importance of high strength concrete at the production plant and by the individual vehicle drivers, it will be more difficult to achieve performance of the structure.▪

Kevin A. MacDonald, FACI, is President and Principal Engineer for Beton Consulting Engineers LLC, Mendota Heights, MN. He was named a Fellow of ACI in 2004. Kevin can be reached at kmacdonald@betonconsulting.com.
This article is available in Adobe PDF format:

Prefabricated Construction Method

Prefabricated Construction Method

Prefabricated Construction Method
Prefabricated construction is a building process in which elements or modules of the structure are prefabricated at plants, then transported to the construction site for installation. Using this method can reduce  the time of building, also saving construction cost. Prefabricated construction is now widely applied for new houses or other building structures like bridge, tunnels,  culverts, water supply system…
The benefits of prefabricated construction method is from the  fabrication of standard components on factory floor. This  production is less time consumption compared to actual condition of construction process. The prefabricated elements are transported to the site for installing process. At the site, the modules are unloaded, moved into position with the support of heavy cranes, and assembled to form a designed building.
Together with the fast assembly, prefabricated construction also saves a lot of money on the construction project. By using standard patterns, the building materials are saved at the manufacturing factories. This help to reduce the waste in formwork and other materials that can occur during traditional building procedures.
Another considerable  profit using prefabricated construction method is the energy efficiency. Because the prefab elements of a panelized home are precut, they fit snugly together, making for a tighter edifice. This means less effort for heating and cooling, resulted  in lower energy bills.
The rapid development of prefabricated houses has led to the increasing of construction templates that homeowners have more choice for designs of their houses. By combining these templates, it is possible to design the layout of the house, specify the dimensions of each room, and build a home that is exactly to the specification of the owners. There are also complex building plans for prefabricated construction that can be adjusted slightly and still have the benefit of using materials of standard lengths, widths, and textures.
Prefabricated houses are not the only type of construction structures that can be produced using prefabrication construction method. As mentioned above, this method is widely used in many types of constructions like bridges, culverts or even swimming pools.

Top