VOLUME AND SURFACE AREA OF DIFFERENT SHAPES
VOLUME AND SURFACE AREA IMPORTANT FACTS AND
FORMULAE
volume equation, equation for volume, volume of pyramid, cone volume, volume of prism, volume sphere, volume, calculating volume,
volume of cube, volume cylinder, volumes, volume cutter, volume definition, triangular prism volume, cylinder volume calculator,
volume bikes, volume of circle, volume of rectangle, rectangular prism volume, specific volume, finding volume, calculate volume
I. CUBIOD
Let length = l, breadth = b and height = h units. Then,
1. Volume = (l x b x h) cubic units.
2. Surface area = 2 (lb + bh + lh)
II. CUBE
Let each edge of a cube be of length a. Then, 1. Volume = a³ cubic
units.
2. Surface area = 6a² sq. units.
3. Diagonal = √3 a units.
III. CYLINDER
Let radius of base = r and Height (or length) = h Then,
1. Volume = (∏r²h) cubic units.
2. Curved surface area = (2∏rh) sq. units.
3. Total surface area = (2∏rh + 2∏r² sq. units)
= 2∏r (h + r) sq. units.
IV. CONE
Let radius of base = r and Height = h. Then,
1. Slant height, l = √h² + r ² units.
2. Volume = [1/3 ∏r²h] cubic units.
3. Total surface area = (∏rl + ∏r²) sq.units.
V. SPHERE
Let the radius of the sphere be r. Then,
1. Volume = [4/3 ∏r3] cubic units.
2. Surface area = (4∏r²) sq. units.
VI. HEMISPHERE
Let the radius of a hemisphere be r. Then,
1. Volume = [2/3 ∏r3] cubic units.
2. Curved surface area = (3∏r²) sq. units.
3. Total surface area = (3∏r²) sq. units.
Remember : 1 litre = 1000 cm³.
FORMULAE
volume equation, equation for volume, volume of pyramid, cone volume, volume of prism, volume sphere, volume, calculating volume,
volume of cube, volume cylinder, volumes, volume cutter, volume definition, triangular prism volume, cylinder volume calculator,
volume bikes, volume of circle, volume of rectangle, rectangular prism volume, specific volume, finding volume, calculate volume
I. CUBIOD
Let length = l, breadth = b and height = h units. Then,
1. Volume = (l x b x h) cubic units.
2. Surface area = 2 (lb + bh + lh)
II. CUBE
Let each edge of a cube be of length a. Then, 1. Volume = a³ cubic
units.
2. Surface area = 6a² sq. units.
3. Diagonal = √3 a units.
III. CYLINDER
Let radius of base = r and Height (or length) = h Then,
1. Volume = (∏r²h) cubic units.
2. Curved surface area = (2∏rh) sq. units.
3. Total surface area = (2∏rh + 2∏r² sq. units)
= 2∏r (h + r) sq. units.
IV. CONE
Let radius of base = r and Height = h. Then,
1. Slant height, l = √h² + r ² units.
2. Volume = [1/3 ∏r²h] cubic units.
3. Total surface area = (∏rl + ∏r²) sq.units.
V. SPHERE
Let the radius of the sphere be r. Then,
1. Volume = [4/3 ∏r3] cubic units.
2. Surface area = (4∏r²) sq. units.
VI. HEMISPHERE
Let the radius of a hemisphere be r. Then,
1. Volume = [2/3 ∏r3] cubic units.
2. Curved surface area = (3∏r²) sq. units.
3. Total surface area = (3∏r²) sq. units.
Remember : 1 litre = 1000 cm³.