Slider

Science

SCITECH

AMAZING FACTS

NATURE SPACE

Psychology

Wastewater Microbes Fuel New Type of Battery

Microbial battery with annotation
A team at Stanford University is working on new system that could eventually power wastewater treatment plants via the energy generated by microbes breaking down organics.

October 22, 2013—Researchers at Stanford University have developed a microbial battery system that harnesses the electrons created by microorganisms digesting organic material in wastewater to create electricity. The team is optimistic that this development will eventually lead to wastewater treatment plants that are energy self-sufficient. 

Approximately three percent of all electricity consumed in developed countries goes to the treatment of wastewater. However, the organic material in the wastewater is sufficient to generate three to four times that amount of energy, according to the results of this research, which were published recently in theProceedings of the National Academy of Sciences.

The paper, “Microbial Battery for Efficient Energy Recovery,” was written by Yi Cui, Ph.D., an associate professor in the Department of Materials Science and Engineering at Stanford. The research was designed by Cui, Craig Criddle, Ph.D., a professor in the Department of Civil and Environmental Engineering, and Xing Xie, an interdisciplinary fellow. 

Their work builds on the concept of microbial fuel cells, which have been under development for decades but are limited by the energy losses inherent in the biological and chemical processes that are used in such cells. Microbial fuel cells also tend to generate methane gas, a health hazard. But Cui says that the microbial battery has vastly superior efficiency. “Using this microbial battery to replace microbial fuel cells, we can increase energy efficiency by 5 to 10 times,” Cui says. “The efficiency can go up in the range of 30 percent.” 

To make the battery, researchers introduced a microbial anode and a silver oxide/silver cathode into a container of wastewater, the two connected by an external circuit. Microbes attached to the anode oxidize the organic material in the wastewater, releasing electrons that pass through a circuit to the cathode. The cathode is then removed and oxidized to retrieve the energy and recharge the system. 

“These microbes consume these organic carbon/hydrogen bonds and generate electrons,” Cui says. “They can use these electrons for synthesizing more organic molecules. So they can use this to grow or generate more microbes. Or—if you take out these electrons before they can use them—then you can let the electricity go out to do useful work.” 

That work could include powering wastewater treatment plants, Cui says. 

“In the wastewater treatment plant you need to consume the organics, anyway,” Cui says. “That’s a required step. Now this required step can turn into an energy-generation process to power the wastewater treatment plant. So that’s a good deal. It’s going to be self-sustained.” 

But before the technology can be tested in the field, the research team needs to answer a challenge. Creating a large-scale version of the microbial battery they have tested would require a prohibitively expensive amount of silver oxide/silver. 

“Using silver is expensive. For the large-scale deployment, that will be hard. In our labs, we are now developing a new electrode material to replace silver/silver oxide. We have some really promising candidates right now,” Cui says. Early indications are they have found a replacement that “costs virtually nothing.” 

If further testing bears out the suitability of this replacement material, Cui says the next step is a pilot scale demonstration of the battery at a wastewater treatment plant. This could happen within two years if things go well. 

“We would like to do our own field study and see what potential issues this might have,” Cui says. “After getting some of that understanding, we are going to move forward.” 

Although their research has focused on wastewater because it is a plentiful source of organic fuel for a microbial battery, Cui says that deep-water environments—oceans and lakes—also have vast stores of organic material. Additionally, such solid wastes as the by-products from cheese and corn production could potentially be suspended in liquids as another source of energy for the microbial batteries.

Paper Origami (Origami Paper)



Could the solution to the impending battery crunch be… origami? Scientists at Arizona State University have created a lithium-ion battery out of carbon nanotube-coated paper — and then, by folding it like a map, they have increased the battery’s energy density by 14 times.
We should probably start with the fact that this foldable lithium-ion battery is made out ofpaper. As you’ve probably surmised, it’s not possible to bend a conventional lithium battery, because it has numerous rigid parts (the carbon anode, the protective casing). To create a paper-based battery, the scientists started with a KimWipe (a porous lint-free paper towel), coated it with polyvinylidene difluoride (PVDF) to improve adhesion of carbon nanotubes — and then dunked the PVDF-coated paper into a solution of carbon nanotubes (CNTs). Powders of lithium titanate oxide (LTO) and lithium cobalt oxide (LCO) — standard lithium battery electrodes — are sandwiched between two sheets of CNT-imbued paper. Thin foils of copper and aluminium placed above and below the sheets of paper complete the battery.
Paper-based lithium-ion battery
Paper-based lithium-ion battery. Top image is the battery in its base state; bottom image is what it looks like after being folded once.
Miura-ori origami foldThe end result is a thin, flexible paper-based battery with reasonable energy density for its mass/volume. The battery truly comes into its own when it’s folded, though. By using the Miura fold to stack the paper-based battery 25 times, the Arizona scientists found that the energy density could be increased by 14 times. The Miura fold, a rigid origami fold, was created by Japanese astrophysicist Koryo Miura for the space-saving deployment of spacecraft solar panels. Today, it’s most commonly found in fold-up maps, though even there it’s rarely used (probably because of the complexity of the fold). In short, the crease pattern of the Miura fold allows you to completely fold or unfold a piece of paper with just a single motion.
Using the Miura fold, the scientists took a 6×7-centimeter (42 cm2) lithium-ion paper battery, and kept folding it until it had a surface area of just 1.68 cm2. While this is a size reduction of around 25 times, the energy density was only increased by 14 times, due to losses from the folding process. The folded paper battery has an areal energy capacity of around 2.0 mAh/cm2, which drops off fairly quickly to 1.5 mAh/cm2 after a few charge/discharge cycles, but keeps its charge fairly well after that.
The scientists will now look at ways of folding the paper even more efficiently, further increasing energy density. Folded paper batteries might eventually be very useful for powering foldable devices — imagine a foldable e-ink or OLED display, powered by a foldable battery, that can be stashed away in your pocket when you don’t need it.

Lithium-ion paper battery, folded using the Miura origami fold

Research paper: DOI: 10.1021/nl4030374 - “Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities”





Top